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In this article, we study a problem of fractional distributed optimal control for the time fractional 

diffusion system evolving in a spatial domain Ω ⊂ ℝ𝑛 using distributed bounded controls. We 

minimize a functional constituted of the deviation between the desired derivative and fractional 

spatial derivative of order 𝛼 ∈ (0, 1) and the energy term. We prove the existence of an optimal 

control solution of the minimization problem. Then, we characterize the control as the solution to 

an optimality system. 

Key words: Optimal Control; Fractional derivative; Diffusion system; Optimality system. 

 

I. Introduction 

Let Ω be bounded domain of ℝ𝑛 with smooth boundary 𝜕Ω of class 𝐶2. For a given time 𝑇 > 0, 

we define 𝐺 = Ω × (0, 𝑇) and 𝜕𝐺 = 𝜕Ω × (0, 𝑇). Consider the fractional diffusion system: 

𝐷+
𝛾

𝑧 − Δ𝑧 = 𝑢 in 𝐺  

𝑧 = 0 on 𝜕𝐺 (1) 

𝐼+
1−𝛾

𝑧(0+) = 𝑧0 in Ω  

where 0 < 𝛾 < 1, 𝑦0 ∈ 𝐻2(Ω) ∩ 𝐻1
0(Ω), the confrol 𝑢 ∈ 𝐿2(𝐺). The fractional integral 𝐼+

1−𝛾
 and 

derivative 𝐷+
𝛾
 are understood in the Riemann-Lioville sense. 

The investigation of fractional diffusion equations and their properties is motivated by their 

efficient description of anomalous diffusion on fractals. These equations find application in 

various physical contexts, such as amorphous semiconductors, strongly porous materials, and 

fractional random walks [1, 2]. Oldham and Spanier [3] established a connection between regular 

diffusion equations and fractional diffusion equations, introducing a formulation with a first-
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order spatial derivative and a half-order time derivative. Mainardi and colleagues [4, 5, 6] 

extended this work by replacing the first time derivative with a fractional derivative of order 𝛾. 

Agrawal [7] delved into solutions for a fractional diffusion wave equation within a bounded 

domain, defining the fractional time derivative in the Caputo sense. Through Laplace and finite 

sine transform techniques, Agrawal obtained a general solution expressed in terms of Mittag-

Leffler functions. 

In the field of calculus of variations and optimal control for fractional differential equations, 

limited progress has been made compared to equations with integer time derivatives. Agrawal [8] 

presented a general formulation and solution scheme for the fractional optimal control problem, 

where the performance index or the system dynamics, or both, contain at least one fractional 

derivative term. The fractional derivative was defined in the Riemann–Liouville sense, and the 

formulation was obtained through the fractional variation principle [9] and the Lagrange 

multiplier technique. Following a similar approach, Frederico Gastao and Torres Delfim [10] 

established a Noether-like theorem for the fractional optimal control problem in the sense of 

Caputo. Agrawal [11] introduced an eigenfunction expansion approach for a class of distributed 

systems with dynamics defined in the Caputo sense. 

We consider the following optimal control problem: 

Find the control function 𝑢 = 𝑢(𝑥, 𝑡) ∈ 𝐿2(𝐺) that minimizes the cost functional 

𝐽(𝑢) =
1

2
‖𝐷𝑥

𝛼𝑧 − 𝑧𝑑‖
𝐿2(0,𝑇;𝐿2(Ω))
2 +

𝛽

2
‖𝑢‖

𝐿2(0,𝑇;𝐿2(Ω))
2  

where 𝐷𝑥
𝛼 denotes the fractional spatial derivative of order 𝛼 ∈ (0, 1), 𝑧 is a solution of system 

(1), 𝑧𝑑 ∈ 𝐿2(Ω) is a desired derivative and 𝛽 > 0. 

To address this problem, we initially establish the existence and uniqueness of a solution for 

problem (1) within the space 𝐿2(𝐺). Subsequently, we demonstrate the unique solvability of the 

optimal control. Finally, by interpreting the first-order optimality condition of the Euler–

Lagrange equation through an adjoint problem formulated with a right fractional Caputo 

derivative, we derive an optimality system for the optimal control. To the best of our knowledge, 

the contribution presented in this work is new and different in the field of fractional calculus, 

providing a comprehensive theoretical exploration of the contemplated optimal control and a 

methodology for its computation. 

The subsequent sections of the paper are structured as follows: Section 2 delves into pertinent 

definitions and preliminary results. In Section 3, we establish the existence and uniqueness of the 

solution for equation (1). Section 4 elucidates the validity of our optimal control problem and 

furnishes the optimality system governing the optimal control. The paper concludes with Section 

5, where we offer final remarks on our findings. 

II. Preliminaries 

In this section, we introduce fundamental terminology and articulate key preliminary results 

those will be employed in the following sections. 

Definition 1([12]). Let 𝑓: ℝ+ → ℝ be continuous function on ℝ+ and 𝛾 > 0. Then the expression 

𝐼+
𝛾

𝑓(𝑡) =
1

Γ(𝛾)
∫ (𝑡 − 𝑠)𝛾−1𝑓(𝑠)𝑑𝑠

𝑡

0

, 𝑡 > 0 

is called the Riemann-Liounille integral of order 𝛾. 

Definition 2([12]) Let 𝑓: ℝ+ → ℝ  be a continuous function on ℝ+ . The Riemann-Liouville 

fractional derivative of order 𝛾 of 𝑓 is defined by 
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𝐷+
𝛾

𝑓(𝑡) =
1

Γ(𝑛 − 𝛾)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−𝛾−1𝑓(𝑠)𝑑𝑠

𝑡

0

, 𝑡 > 0 

where 𝛾(𝑛 − 1, 𝑛), 𝑛 ∈ ℕ. 

Definition 3([12]) Let 𝑓: ℝ+ → ℝ be a continuous function on ℝ+. The left Caputo fractional 

derivative of order 𝛾 of 𝑓 is defined by 

𝐷0
𝛾

𝑓(𝑡) =
1

Γ(𝑛 − 𝛾)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−𝛾−1𝑓𝑛(𝑠)𝑑𝑠

𝑡

0

, 𝑡 > 0 

where 𝛾(𝑛 − 1, 𝑛), 𝑛 ∈ ℕ.  

The Caputo fractional derivative serves as a form of regularization at the temporal origin when 

compared to the Riemann–Liouville fractional derivative. 

Lemma 1 ([12,13]). Let T > 0, 𝑢 ∈ 𝐶𝑘([0, 𝑇]), 𝑞 ∈ (𝑘 − 1, 𝑘), 𝑘 ∈ ℕ and 𝑔 ∈ 𝐶1([0, 𝑇]). Then 

for 𝑡 ∈ [0, 𝑇], the following properties hold: 

a. 𝐷+
𝑞𝑔(𝑡) =

𝑑

𝑑𝑡
𝐼+

1−𝑞𝑔(𝑡), 𝑘 = 1. 

b. 𝐷+
𝑞𝐼+

𝑞𝑔(𝑡) = 𝑔(𝑡). 

c. 𝐼+
𝑞𝐷0

𝑞𝑔(𝑡) = 𝑔(𝑡) − ∑
𝑡𝑖

𝑖!
𝑔(𝑖)(0)𝑘−1

𝑖=0 . 

d. lim
𝑡→0+

𝐷0
𝑞 𝑔(𝑡) = lim

𝑡→0+
𝐼+

𝑞𝑔(𝑡) = 0. 

Henceforth, we consider the right fractional Caputo derivative: 

𝒟𝛾𝑓(𝑡) =
1

Γ(𝑡 − 𝛾)
∫ (𝑠 − 𝑡)−𝛾𝑓′(𝑠)𝑑𝑠

𝑇

𝑡

 

Lemma 2([14]). For any 𝜙 ∈ 𝐶∞(𝐺), we have 

∫ ∫ (𝐷+
𝛾

𝑧(𝑥, 𝑡) − Δ𝑧(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

= ∫ 𝜙(𝑥, 𝑇)𝐼+
1−𝛾

𝑧(𝑥, 𝑇)𝑑𝑥
Ω

 

 
− ∫ 𝜙(𝑥, 0)𝐼+

1−𝛾
𝑧(𝑥, 0+)𝑑𝑥

Ω

 

 
+ ∫ ∫ 𝑧

𝜕𝜙

𝜕𝜈
𝑑𝜎𝑑𝑡

∂Ω

𝑇

0

− ∫ ∫
𝜕𝑧

𝜕𝜈
𝜙𝑑𝜎𝑑𝑡

∂Ω

𝑇

0

 

 
+ ∫ ∫ 𝑧(𝑥, 𝑡)(−𝒟𝛾𝜙(𝑥, 𝑡) − Δϕ(𝑥, 𝑡))𝑑𝑥𝑑𝑡

𝑇

0Ω

 

Lemma 3([14]). Let 𝑧 be the solution of (1). Then for any 𝜙 ∈ 𝐶∞(𝐺) such that 𝜙(𝑥, 𝑇) = 0 in 

Ω and 𝜙 = 0 on 𝜕𝐺, we have 

∫ ∫ (𝐷+
𝛾

𝑧(𝑥, 𝑡) − Δ𝑧(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

= − ∫ 𝜙(𝑥, 0)𝐼+
1−𝛾

𝑧(𝑥, 0+)𝑑𝑥
Ω

 

 
− ∫ ∫

𝜕𝑧

𝜕𝜈
𝜙𝑑𝜎𝑑𝑡

∂Ω

𝑇

0

+ ∫ ∫ 𝑧
𝜕𝜙

𝜕𝜈
𝑑𝜎𝑑𝑡

∂Ω

𝑇

0

 

 
+ ∫ ∫ 𝑧(𝑥, 𝑡)(−𝒟𝛾𝜙(𝑥, 𝑡) − Δϕ(𝑥, 𝑡))𝑑𝑥𝑑𝑡

Ω

𝑇

0

 

 

Lemma 4([13]). Let 0 < 𝛾 < 1 . Let 𝑔 ∈ 𝐿𝑝(0, 𝑇) , 1 ≤ 𝑝 ≤ ∞  and 𝜙: (0, 𝑇) → ℝ , be the 

function defined by 

𝜙(𝑡) =
𝑡−𝛾

Γ(1 − 𝛾)
. 
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Then for almost every 𝑡 ∈ [0, 𝑇], the function 𝑠 ↦ 𝜙(𝑡 − 𝑠)𝑔(𝑠) is integrable on [0, 𝑇]. Set  

𝜙 ∗ 𝑔(𝑡) = ∫ 𝜙(𝑡 − 𝑠)𝑔(𝑠)𝑑𝑠
𝑡

0

. 

Then 𝜙 ∗ 𝑔 ∈ 𝐿𝑝(0, 𝑇) and 

‖𝜙 ∗ 𝑔‖𝐿𝑝(0,𝑇) ≤ ‖𝜙‖𝐿1(0,𝑇)‖𝑔‖𝐿𝑝(0,𝑇). 

The right function [6, 12, 15] is defined as follows: 

Φ𝛾(𝑥) = ∑
(−𝑥)𝑗

𝑗! Γ(−𝛾𝑗 + 1 − 𝛾)

∞

𝑗=0

=
1

2𝑖𝜋
∫𝑠𝛾−1𝑒(𝑠−𝑥𝑠𝛾)

𝐶

𝑑𝑠, 0 < 𝛾 < 1 (2) 

where 𝐶 is a contour which starts and ends at −∞ and encircles the origin once clockwise. The 

relation between the Wright function and the Mittag-Leffler function is 

𝐸𝛾(𝑥) = ∫ Φγ(𝑠)𝑒𝑥𝑠
∞

0

𝑑𝑠, 0 < 𝛾 < 1. 

That is, 𝐸𝛾(−𝑥) is the Laplace transform of Φ𝛾 in the whole complex plane.  

III. Existence and uniqueness of the solution of (1) 

Consider the abstract fractional differential equation in a Banach space 𝔹: 

𝐷+
𝛾

𝑧(𝑡) = 𝐴𝑧(𝑡) + ℎ(𝑡), [0, 𝑇]  

𝐼+
1−𝛾

𝑧(0+) = 𝑧0,  (3) 

where (𝔹, ‖⋅‖𝔹) is a Banach space, 0 < 𝛾 < 1 , 𝐴: 𝐷(𝐴) ⊂ 𝔹 → 𝔹  is a closed linear operator 

defined on a dense subset 𝐷(𝐴) of the Banach space 𝔹, 𝑧0 ∈ 𝐷(𝐴) and ℎ(𝑡) ∈ 𝐿2((0, 𝑇 );  𝔹). 

In this paper, we consider a Laplace transform of vector-valued functions. The existence and 

uniqueness of the solution to (2) is considered assuming that 𝐴 is the generator of a uniformly 

bounded 𝐶0-semigroup (𝑄(𝑡))
𝑡≥0

. That is there exists 𝐾 > 0 such that 

sup
𝑡≥0

‖𝑄(𝑡)‖𝐵(𝔹) ≤ 𝐾 (4) 

where (𝐵(𝔹), ‖⋅‖𝐵(𝐵)) is the Banach space of all linear bounded operators on 𝔹. 

Note that, if (𝐴, 𝐷(𝐴)) = (Δ, 𝐻2(Ω) ∩ 𝐻0
1(Ω)), where Δ is the Laplacian operator then 𝐴 is the 

generator of a contraction semigroup [30]. Hence (4) is satisfied. 

The proof of the existence and uniqueness of (3) is established in [14]. For the sake of 

completeness, we present the results from [14]. 

Theorem 1[14]. Let 
1

2
< 𝛾 < 1. Assume that ℎ ∈ 𝐿2((0, 𝑇);  𝔹) and 𝐴 is the generator of a 𝐶0-

semigroup (𝑄(𝑡))
𝑡≥0

 on a Banach space 𝔹 satisfying (4). Then for any 𝑧0 ∈ 𝐷(𝐴), problem (3) 

has a unique solution 𝑧 ∈ 𝐿2((0, 𝑇);  𝔹) given by: 

𝑧(𝑡) = 𝒫𝛾𝑧0 + ∫ 𝒫𝛾(𝑡 − 𝜏)ℎ(𝜏)

𝑡

0

𝑑𝜏 

where  

𝒫𝛾(𝑡) = 𝛾 ∫ 𝑠𝑡𝛾−1Φ𝛾(𝑠)𝑄(𝑡𝛾𝑠)𝑑𝑠
∞

0

 (5) 

with Φ𝛾 is defined as in (2). Moreover 

‖𝑧‖𝐿2((0,𝑇);𝔹 ) ≤
𝐾

Γ(𝛾)
(√

2𝑇2𝛾−1

(2𝛾 − 1)
‖𝑧0‖𝔹 + √

2𝑇3𝛾

𝛾3
‖ℎ‖𝐿2((0,𝑇); 𝔹)). (6) 
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Corollary 1[14]. Let 0 < 𝛾 < 1 and 𝑧0 = 0. Assume that 𝐴 is the generator of a 𝐶0-semigroup 

(𝑄(𝑡))
𝑡≥0

 on a Banach space 𝔹  satisfying (4). Then problem (3) has a unique solution             

𝑧 ∈ 𝐿2((0, 𝑇);  𝔹) given by: 

𝑧(𝑡) = ∫ 𝒫𝛾(𝑡 − 𝜏)ℎ(𝜏)

𝑡

0

𝑑𝜏 (7) 

Moreover 

‖𝑧‖𝐿2((0,𝑇);𝔹 ) ≤
𝐾

Γ(𝛾)
(√

𝑇3𝛾

𝛾3
‖ℎ‖𝐿2((0,𝑇); 𝔹)). (8) 

Theorem 2[14]. Let 
1

2
< 𝛾 < 1 and 𝑧0 ∈ 𝐻2(Ω) ∩ 𝐻0

1(Ω) and 𝑢 ∈ 𝐿2(𝐺). Then problem (1) has 

a unique solution in 𝐿2(𝐺).  

Moreover 

‖𝑧‖𝐿2((0,𝑇);𝔹 ) ≤
1

Γ(𝛾)
(√

2𝑇2𝛾−1

(2𝛾 − 1)
‖𝑧0‖𝐿2(Ω) + √

2𝑇3𝛾

𝛾3
‖𝑢‖𝐿2(𝐺)). (9) 

Corollary 2[14]. Let 0 < 𝛾 < 1  and 𝑧0 = 0  and 𝑢 ∈ 𝐿2(𝐺) . Then problem (1) has a unique 

solution 𝐿2(𝐺). Moreover 

‖𝑧‖𝐿2(𝐺 ) ≤
1

Γ(𝛾)
(√

𝑇3𝛾

𝛾3
‖𝑢‖𝐿2(𝐺)). 

Now, consider the backward fractional differential equation: 

−𝔇𝛾𝑝(𝑡) − 𝐴𝑝(𝑡) = 𝑟(𝑡), 𝑡 ∈ [0, 𝑇] 
𝑝(𝑇) = 0        

(10) 

where 0 < 𝛾 < 1, 𝑟 ∈ 𝐿2((0, 𝑇);  𝔹) and 𝐴 is the generator of a 𝐶0-semigroup (𝑄(𝑡))
𝑡≥0

 on a 

Banach space 𝔹. 

Theorem 3[14]. Let 0 < 𝛾 < 1. Assume that 𝐴 is the generator of a 𝐶0-semigroup (𝑄(𝑡))
𝑡≥0

 on 

a Banach space 𝔹 satisfying (4). Then problem (10) has a unique solution 𝑝 ∈ 𝐿2(𝐺) given by: 

𝑝(𝑡) = ∫ 𝒫𝛾(𝑡 − 𝜏)𝑟(𝜏)

𝑡

0

𝑑𝜏 (11) 

where 𝒫(𝑡) is the operator defined by (5). Moreover 

‖𝑝‖𝐿2((0,𝑇);𝔹 ) ≤
𝐾

Γ(𝛾)
(√

𝑇3𝛾

𝛾3
‖𝑟‖𝐿2((0,𝑇); 𝔹)). (12) 

IV. Optimal control 

In this section we want to find the control function 𝑢 = 𝑢(𝑥, 𝑡) ∈ 𝐿2(𝐺) that minimizes the cost 

functional 

𝐽(𝑢) =
1

2
‖𝐷𝑥

𝛼𝑧 − 𝑧𝑑‖
𝐿2(0,𝑇;𝐿2(Ω))
2 +

𝛽

2
‖𝑢‖

𝐿2(0,𝑇;𝐿2(Ω))
2  

where 𝐷𝑥
𝛼 denotes the fractional spatial derivative of order 𝛼 ∈ (0, 1), 𝑧 is a solution of system 

(1), 𝑧𝑑 ∈ 𝐿2(Ω) is a desired derivative and 𝛽 > 0. 
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𝐽(𝑢) = lim

𝑣∈𝐿2(𝐺)
𝐽(𝑣) (13) 

Proposition 1. Assuming the state of the system is described by (1), there exists a unique 

optimal control, 𝑢, that minimizes (13). 

Proof: Consider the the sequence {𝑢𝑛} ⊂ 𝐿2(𝐺), that minimizes (13). 

Then, 

𝐽(𝑢𝑛) → inf
𝑢∈𝐿2(𝐺)

𝐽(𝑢). (14) 

Then 𝑧𝑛 = 𝑧(𝑢𝑛) is a solution of (1). That is, 𝑧𝑛 satisfies 

𝐷+
𝛾

𝑧𝑛 − Δ𝑧𝑛 = 𝑢𝑛, in 𝐺 (15) 

𝑧𝑛 = 0, on 𝜕𝐺 (16) 

𝐼+
1−𝛾

𝑧𝑛(𝑥, 0) = 𝑧0, in Ω (17) 

Moreover, from (14), it follows that there exists 𝐶 > 0 independent of 𝑛 such that  

‖𝑢𝑛‖𝐿2(𝐺) ≤ 𝐶, 

‖𝑧𝑛‖𝐿2(𝐺) ≤ 𝐶 

and follows from (15) that 

‖𝐷+
𝛾

𝑧𝑛 − Δ𝑧𝑛‖
𝐿2(𝐺)

≤ 𝐶. (18) 

Thus there exists 𝑢, 𝑦, 𝛿 ∈ 𝐿2(𝐺) and subsequences and be extracted from {𝑢𝑛} and {𝑧𝑛} (for 

simplicity these subsequences still be denoted by {𝑢𝑛} and {𝑧𝑛}) such that  

𝑢𝑛 ⇀ 𝑢  weakly in 𝐿2(𝐺), (19) 

𝑧𝑛 ⇀ 𝑧  weakly in 𝐿2(𝐺), (20) 

𝐷+
𝛾

𝑧𝑛 − Δ𝑧𝑛 ⇀ 𝛿  weakly in 𝐿2(𝐺). (21) 

Define the set 𝕊(𝐺) = {𝜙 ∈ 𝐶∞(𝐺)|𝜙|𝜕Ω = 0, 𝜙(𝑥, 0) = 𝜙(𝑥, 𝑇) = 0 in Ω}  and 𝕊′(𝐺)  denotes 

the dual of 𝕊(𝐺). 

From Lemma 3, it follows that 

∫ ∫ (𝐷+
𝛾

𝑧𝑛(𝑥, 𝑡) − Δ𝑧𝑛(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

= ∫ ∫ 𝑧𝑛(𝑥, 𝑡)(−𝔇𝛾𝜙(𝑥, 𝑡) − Δϕ(𝑥, 𝑡))𝑑𝑥𝑑𝑡
Ω

𝑇

0

 

for all 𝜙 ∈ 𝕊(𝐺). 

Therefore, from (20) it follows that 

lim
𝑛→∞

∫ ∫ (𝐷+
𝛾

𝑧𝑛(𝑥, 𝑡)
Ω

𝑇

0

− Δ𝑧𝑛(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡 

= ∫ ∫ 𝑧(𝑥, 𝑡)(−𝔇𝛾𝜙(𝑥, 𝑡) − Δϕ(𝑥, 𝑡))𝑑𝑥𝑑𝑡
Ω

𝑇

0

 

 
= ∫ ∫ (𝐷+

𝛾
𝑧𝑛(𝑥, 𝑡) − Δ𝑧𝑛(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡

Ω

𝑇

0

 

That is, 

𝐷+
𝛾

𝑧𝑛 − Δ𝑧𝑛 ⇀ 𝐷+
𝛾

𝑧 − Δ𝑧 weakly in 𝕊′(𝐺), 
and hence 

𝐷+
𝛾

𝑧 − Δ𝑧 = 𝛿 ∈ 𝐿2(𝐺). (22) 

 

Thus, from (15), (19), (21) and (22), we can deduce that 

𝐷+
𝛾

𝑧 − Δ𝑧 = 𝑢 in 𝐺, (23) 

𝐷+
𝛾

𝑧𝑛 − Δ𝑧𝑛 ⇀ 𝐷+
𝛾

𝑧 − Δ𝑧 weakly in 𝐿2(𝐺). (24) 

If 𝑧 ∈ 𝐿2(𝐺) , then from Lemma 4 it follows that 𝐼+
1−𝛾

𝑧 ∈ 𝐿2(𝐺) . Therefore, we have           
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𝐷+
𝛾

𝑧 = 𝐼+
1−𝛾

𝑧 ∈ 𝐻−1((0, 𝑇); 𝐿2(Ω))  and hence Δ𝑧 ∈ 𝐻−1((0, 𝑇); 𝐿2(Ω))  because (22) holds. 

Thus 𝑧(𝑡) ∈ 𝐿2(Ω) and Δ𝑧(𝑡) ∈ 𝐿2(Ω). Thus, we can conclude that 𝑧|𝜕Ω exists and belongs to 

𝐻−
1

2(𝜕Ω) (see [16]). 

Also, we haveΔ𝑧 ∈ 𝐿2((0, 𝑇); 𝐻−2(Ω)) and hence 𝐷+
𝛾

𝑧 = 𝐼+
1−𝛾

𝑧 ∈ 𝐿2((0, 𝑇); 𝐻−2(Ω)) since (22) 

holds. Thus 𝐼+
1−𝛾

𝑧 ∈ 𝐿2(𝐺) and 
𝑑

𝑑𝑡
𝐼+

1−𝛾
𝑧 ∈ 𝐿2((0, 𝑇); 𝐻−2(Ω)). Consequently 𝐼+

1−𝛾
𝑧  belongs to 

𝐶([0, 𝑇], 𝐻−1(Ω)) (see [17]). That is, 𝐼+
1−𝛾

𝑧(𝑥, 0) exists and exist and belongs to 𝐻−1(Ω). 

Now, multiplying (15) by 𝜙 ∈ 𝐶∞(𝐺) with 𝜙|𝜕Ω = 0 and 𝜙(𝑥, 𝑇) = 0 on Ω, and integrating by 

parts over 𝐺 , we obtain by using Lemma 3, 

∫ ∫ (𝐷+
𝛾

𝑧𝑛(𝑥, 𝑡) − Δ𝑧𝑛(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

= − ∫ 𝜙(𝑥, 0)𝑧0

Ω

𝑑𝑥 + ∫ ∫ 𝑧𝑛(𝑥, 𝑡)(−𝔇𝛾𝜙(𝑥, 𝑡) − Δϕ(𝑥, 𝑡))𝑑𝑥𝑑𝑡
Ω

𝑇

0

 

Using (20) and (24), we have 

∫ ∫ (𝐷+
𝛾

𝑧(𝑥, 𝑡) − Δz(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

+ ∫ 𝜙(𝑥, 0)𝑧0

Ω

𝑑𝑥

= ∫ ∫ 𝑧(𝑥, 𝑡)(−𝔇𝛾𝜙(𝑥, 𝑡) − Δϕ(𝑥, 𝑡))𝑑𝑥𝑑𝑡
Ω

𝑇

0

. 

(25) 

Integration by parts and Lemma 2 gives us 

∫ ∫ (𝐷+
𝛾

𝑧(𝑥, 𝑡) − Δz(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

+ ∫ 𝜙(𝑥, 0)𝑧0

Ω

𝑑𝑥

= +⟨𝜙(𝑥, 0), 𝐼+
1−𝛾

𝑧(𝑥, 0+)⟩
𝐻0

1(Ω),𝐻−1(Ω)
− ∫ ⟨𝑧,

𝜕𝜙

𝜕𝜈
⟩

𝐻
−

1
2(Ω),𝐻

1
2(Ω)

𝑇

0

𝑑𝑡 

+ ∫ ∫ (𝐷+
𝛾

𝑧(𝑥, 𝑡) − Δ𝑧(𝑥, 𝑡)) 𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡
Ω

𝑇

0

                            

for all 𝜙 ∈ 𝐶∞(𝐺) with 𝜙|𝜕Ω = 0 and 𝜙(𝑥, 𝑇) = 0 in Ω 

(26) 

where ⟨⋅,⋅⟩𝑌,𝑌′ represents the duality bracket between the spaces 𝑌 and 𝑌′. 

Hence, from (26), it follows that 

+ ∫ 𝜙(𝑥, 0)𝑧0

Ω

𝑑𝑥 = +⟨𝜙(𝑥, 0), 𝐼+
1−𝛾

𝑧(𝑥, 0+)⟩
𝐻0

1(Ω),𝐻−1(Ω)
− ∫ ⟨𝑧,

𝜕𝜙

𝜕𝜈
⟩

𝐻
−

1
2(Ω),𝐻

1
2(Ω)

𝑇

0

𝑑𝑡 

for all 𝜙 ∈ 𝐶∞(𝐺) with 𝜙|𝜕Ω = 0 and 𝜙(𝑥, 𝑇) = 0 in Ω. 

Now, if we select 𝜙 such that 
𝜕𝜙

𝜕𝜈
= 0 on 𝜕Ω, then we obtain 

𝐼+
1−𝛾

𝑧(𝑥, 0+) = 𝑧0(𝑥) in Ω (27) 

and then, 

𝑧 = 0 𝑜n 𝜕Ω. (28) 

Thus, from (23), (27) and (28) it follows that 𝑧 = 𝑧(𝑢) is a solution of system (1). 

For 𝛼 ∈ (0, 1), 𝐷𝑥
𝛼 is a continuous functional from 𝐻0

1(Ω) → 𝐿2(Ω), we have 

lim
𝑛→∞

∫ ‖𝐷𝑥
𝛼𝑧𝑛(𝑡) − 𝑧𝑑‖𝐿2(Ω)

𝑇

0

𝑑𝑡 = ∫ ‖𝐷𝑥
𝛼𝑧(𝑡) − 𝑧𝑑‖𝐿2(Ω)

𝑇

0

𝑑𝑡 

and 𝐽 is lower semi-continuous with respect to weak convergence, it follows that 

𝐽(𝑢) ≤ lim
𝑛→∞

inf 𝐽(𝑢𝑛). (29) 
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Hence 

𝐽(𝑢) = lim
𝑣∈𝐿2(𝐺)

𝐽(𝑣). 

The uniqueness of 𝑢 follows from the strict convexity of 𝐽. 

Proposition 1. If 𝑢 is a solution (13), then there exists 𝑝 ∈ 𝐿2(𝐺) such that the triplet (𝑢, 𝑧, 𝑝) 

satisfies the following optimality system: 

{

𝐷+
𝛾

𝑧 − Δ𝑧 = 𝑢 in 𝐺

𝑧 = 0 on 𝜕𝐺

𝐼+
1−𝛾

𝑧(𝑥, 0+) = 𝑧0 in Ω

 (30) 

{

−𝔇𝛾𝑝 − Δ𝑝 = 𝐷𝑥
𝛼𝑧 − 𝑧𝑑 in 𝐺

𝑝 = 0 on 𝜕𝐺

𝑝(𝑇) = 0 in Ω
 (31) 

𝑢 = −
2𝑝

𝛽
in 𝐺 (32) 

Proof: (30) follows from (23), (27) and (28). To prove (31) and (32), we apply Euler-Lagrange 

technique which will characterize the optimal control 𝑢. 

We have 
𝑑

𝑑𝜇
𝐽(𝑢 + 𝜇𝜙)|𝜇=0 = 0, for all 𝜙 ∈ 𝐿2(𝐺). (33) 

The state 𝑦 associated with the control 𝜙 ∈ 𝐿2(𝑄) is a solution of 

{

𝐷+
𝛾

𝑦 − Δy = 𝜙 in 𝐺

𝑦 = 0 on 𝜕𝐺

𝐼+
1−𝛾

𝑦(𝑥, 0+) = 0 in Ω

 (34) 

After differentiating (33), we have 

∫ ∫ 𝑦(𝐷𝑥
𝛼𝑧(𝑢) − 𝑧𝑑)

Ω

𝑇

0

𝑑𝑥𝑑𝑡 +
𝛽

2
∫ ∫ 𝑢𝜙

Ω

𝑇

0

𝑑𝑥𝑑𝑡 = 0 ∀ 𝜙 ∈ 𝐿2(𝐺). (35) 

Consider the following adjoint state equation to interpret (35): 

{

−𝔇𝛾𝑝 − Δ𝑝 = 𝐷𝑥
𝛼𝑧 − 𝑧𝑑 in 𝐺

𝑝 = 0 on 𝜕𝐺

𝑝(𝑇) = 0 in Ω
 (36) 

Since 𝐷𝑥
𝛼𝑧 − 𝑧𝑑 ∈ 𝐿2(𝐺), Theorem 3 and (𝐴, 𝐷(𝐴)) = (Δ, 𝐻2(Ω) ∩ 𝐻0

1(Ω)) together imply that 

(36) has unique solution in 𝐿2(𝐺). Hence, multiplying (34) 𝑝, ang applying Lemma 3, we obtain 

∫ ∫ (𝐷+
𝛾

𝑧 − Δ𝑧)𝑝
Ω

𝑇

0

𝑑𝑥𝑑𝑡 = ∫ ∫ (−𝔇𝛾𝑝 − Δ𝑝)𝑧
Ω

𝑇

0

𝑑𝑥𝑑𝑡 

 
= ∫ ∫ (𝐷𝑥

𝛼𝑧(𝑢) − 𝑧𝑑)𝑧
Ω

𝑇

0

𝑑𝑥𝑑𝑡. 

Hence, from (34) and (35), we deduce that 

∫ ∫ 𝜙𝑝
Ω

𝑇

0

𝑑𝑥𝑑𝑡 = −
𝛽

2
∫ ∫ 𝜙𝑢

Ω

𝑇

0

𝑑𝑥𝑑𝑡 ∀ 𝜙 ∈ 𝐿2(𝑄). 

Thus, 

𝑢 = −
2𝑝

𝛽
 in 𝐺. 
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